Robust Fully Distributed Minibatch Gradient Descent with Privacy Preservation
نویسندگان
چکیده
منابع مشابه
Fully Distributed Privacy Preserving Mini-batch Gradient Descent Learning
In fully distributed machine learning, privacy and security are important issues. These issues are often dealt with using secure multiparty computation (MPC). However, in our application domain, known MPC algorithms are not scalable or not robust enough. We propose a light-weight protocol to quickly and securely compute the sum of the inputs of a subset of participants assuming a semi-honest ad...
متن کاملPrivacy-preservation for Stochastic Gradient Descent Method
The traditional paradigm in machine learning has been that given a data set, the goal is to learn a target function or decision model (such as a classifier) from it. Many techniques in data mining and machine learning follow a gradient descent paradigm in the iterative process of discovering this target function or decision model. For instance, Linear regression can be resolved through a gradie...
متن کاملAccelerating Minibatch Stochastic Gradient Descent using Stratified Sampling
Stochastic Gradient Descent (SGD) is a popular optimization method which has been applied to many important machine learning tasks such as Support Vector Machines and Deep Neural Networks. In order to parallelize SGD, minibatch training is often employed. The standard approach is to uniformly sample a minibatch at each step, which often leads to high variance. In this paper we propose a stratif...
متن کاملFully Distributed and Asynchronized Stochastic Gradient Descent for Networked Systems
This paper considers a general data-fitting problem over a networked system, in which many computing nodes are connected by an undirected graph. This kind of problem can find many real-world applications and has been studied extensively in the literature. However, existing solutions either need a central controller for information sharing or requires slot synchronization among different nodes, ...
متن کاملTwo Stage Prediction Process with Gradient Descent Methods Aligning with the Data Privacy Preservation
Privacy preservation emphasize on authorization of data, which signifies that data should be accessed only by authorized users. Ensuring the privacy of data is considered as one of the challenging task in data management. The generalization of data with varying concept hierarchies seems to be interesting solution. This paper proposes two stage prediction processes on privacy preserved data. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Security and Communication Networks
سال: 2018
ISSN: 1939-0114,1939-0122
DOI: 10.1155/2018/6728020